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Abstract. New results on similarity solutions to one-dimensional reactive flow problems 
with strong shocks are presented. Using dimensional methods, two modelling numbers 
for the flow are identified and the possible equations of state, including Mie-Griineisen 
forms, which admit similarity solutions are characterised. In a special case the entire 
problem is reduced to a nonlinear eigenvalue problem in a sound speed-particle velocity 
phase plane. In this plane the critical points are analysed and the relationship between 
singular points in the self-similar solution and the characteristics of the Zel’dovich-von 
Neumann-Doering equations is found. 

1. Introduction 

The problem statement is as follows. We consider self-similar motion of a strong 
shock wave moving into a reactive medium and initiating a chemical reaction which 
takes place behind the shock. The self-similar flow of the chemical mixture behind 
the shock is described by the ZND (Zel’dovich-von Neumann-Doring) model (see 
Fickett and Davis 1979) which consists of the adiabatic, inviscid, one-dimensional 
fluid equations, plus constitutive relations for the equation of state and for the local 
chemical reaction rate(s). 

The first part of the problem is to determine the general constitutive relations for 
which the ZND model possesses self-similar detonation waves as solutions. The main 
problem then is to characterise the resultant self-similar waves physically. This is 
done by interpreting the critical points and singular points of the self-similar equations 
in terms of physical quantities. Such interpretation is accomplished most directly by 
reducing the self-similar equations to motion in a ‘phase plane’ whose coordinates 
are the local sound speed and particle velocity. 

In recent years several investigators have studied such problems of self-similar 
detonation waves in the ZND model. In these studies, the equation of state of the 
chemical mixture is that of a polytropic gas and the chemical kinetics are given by 
various interpolation functions for reaction rates; for example, a reaction rate propor- 
tional. to the internal energy or the temperature is known to simplify the self-similar 
calculations. For such reaction rate functions, Sternberg (1970) has given a relatively 
complete description of self-similar ZND flows in Eulerian coordinates. Logan and 
PCrez (1980) have characterised the general form of reaction rates for ideal gas 
equations of state under which the ZND model admits self-similar solutions and have 
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also computed the local Lie group under which the one-dimensional problem in 
Lagrangian variables is invariant. In a special case Logan and Bdzil (1982) have 
reduced the problem of self-similar ZND waves in spherical geometry to phase-plane 
analysis in a ‘Lie plane’, whose coordinates, however, have no physical significance. 
Cowperthwaite (1978) has used self-similar solutions in conjunction with Lagrangian 
gauge data to determine energy release rates. Bisimov et a1 (1970), Lee et a1 (19691, 
and recently Kame1 and Oppenheim (1979) have also studied self-similar solutions 
where energy is deposited continuously in the flow regime behind the shock. Further 
references on these types of problems as well as on problems where the energy is 
released either in the shock front or after an induction time period can be found in 
Korobeinikov (1976). 

In the present paper we first answer the question of which equations of state 
e = e ( p ,  p, A )  admit self-similar solutions and we determine Mie-Griineisen forms of 
the equation of state. Here, e is internal energy, p is pressure, p is density and A is 
the degree of chemical reaction. Classical dimensional analysis of the governing ZND 

equations then leads us to identify two dimensionless modelling numbers whose values 
decisively affect the flow. Indeed, the product of these two modelling numbers acts 
as a nonlinear eigenvalue for the existence of regular solutions in the self-similar ZND 

problems for which the reaction rate is taken to be proportional to the internal energy. 
For that class of ZND problems, by choosing phase-plane variables to be particle 
velocity and local sound speed, we determine the physical nature of the critical and 
singular points encountered in spherical geometry by Logan and Bdzil. In addition, 
we determine in general the relationship between the singular points in the self-similar 
flow and the characteristics of the original ZND equations. 

In §§ 2 and 3 the ZND equations are recalled and made dimensionless. In § 4, 
imposition of scale invariance upon the ZND system restricts the functional forms of 
the ZND constitutive relations to a class which includes state equations of Mie- 
Griineisen type. Thereupon, scale invariance is used to reduce the ZND system to 
ordinary differential equations for the self-similar solutions. In 9 5 we consider the 
particular class of constitutive functions for which solution of the similarity equations 
reduces to phase-plane analysis plus quadratures. Significantly, in D 6 the critical 
points of this phase-plane problem are seen to be determined by the characteristic 
equations of the original ZND system. Then in D 7 an example is studied for planar 
geometry and for a polytropic equation of state with y = 3 .  In the example, most of 
the phase-plane analysis can be done without numerical aid, except to determine a 
nonlinear eigenvalue for which there exists a regular solution over the entire range 
of integration. From that example, in B 8 we supply the physical interpretation of the 
critical-point results obtained in spherical geometry by Logan and Bdzil. 

2. The governing equations 

In Eulerian form, the ZND equations governing the flow of a reacting fluid are given 
by (see Fickett and Davis 1979) 

dpldt + p ( u ,  + u u / r )  = 0 

du/dt + p,/p = 0 

dp/dt - ( B / p )  dp/dt = q 2 1 r p Q / T  
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dA/dt = Q / r  (2 .4 )  

where p,  U, p are the density, particle velocity, and pressure, respectively, and A is 
the dimensionless progress variable of a single, irreversible chemical reaction (A 
represents the mass fraction of the product). Equations (2 .1 )  and (2 .2 )  are the usual 
conservation laws for mass and momentum with v = 0, 1 ,  2 the geometric factor for 
planar, cylindrical, spherical symmetry, respectively, and d/dt = a/at + U alar the con- 
vective derivative. Equation (2 .3 )  is the expression for the conservation of energy, 
where B = B ( p , p ,  A )  is the bulk modulus, I = I ( p , p ,  A )  is the chemical potential, 
r = T ( p ,  p ,  A )  is the Griineisen function and Q = Q ( p ,  p ,  A )  is the chemical reaction 
rate with 117 being the rate constant. The functions B, 1 and r are related to the 
equation of state e = e ( p ,  p, A ), where e is the internal energy, via the equations 

where U = l / p  is the specific volume and q 2  is the heat of reaction. Equation (2 .3 )  
follows easily from the adiabatic equation de = -p du and the definitions (2 .5 ) .  The 
reader may more readily recognise (4 .3 )  as conservation of energy, from which (2 .3 )  
follows. Finally, (2 .4 )  is the rate equation governing the evolution of the chemical 
reaction. The requirement of Galilean invariance precludes dependence upon U in 
the constitutive functions B, I ,  r and 0. 

The equilibrium state just behind a shock with velocity D propagating into a 
quiescent material with initial states p o ,  P O ,  uo=O,  A o = O  is determined by the 
Rankine-Hugoniot jump conditions. These relations are 

U l l D  = 1 -PoIP1 (2 .6 )  

pi - P o  = pou iD (2 .7)  

Equation (2 .9 )  indicates that no reactions occur in the shock front. For strong shocks, 
the terms involving po are to be neglected. We note that no viscous or heat conduction 
effects are present to disperse the shock. 

3. Scaling 

In order to write the equations in dimensionless form we introduce the following 
dimensionless variables: 

where ro is a length scale for the problem and Do is the initial (time t = 0) shock speed. 
The partial differential equations (2.1)-(2.4) become, upon dropping the bar notation, 

(3.2) 

(3 .3 )  

dpldt + p ( u ,  + uu/r) = 0 

duldt + p,/p = 0 
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dpldt - ( B / p )  dpldt = k,k,pTlQ (3.4) 

dA/dt = klQ (3.5) 

where k ,  and k ,  are dimensionless modelling numbers given by 

Hence k ,  is the ratio of the hydrodynamic time scale to the time scale for the chemical 
reaction, and k ,  is the ratio of the specific energies for the chemical reaction and the 
hydrodynamics. The competition between the chemistry and the hydromechanical 
flow shows up in equations (3.4) and (3.5). For k , = 0 ( 1 ) ,  the reactive equations 
become those of inert flow in the limit that k,c< 1, i.e. when the chemistry takes place 
much more slowly than the mechanical processes. If k ,  >> 1, then the time scale for 
the chemistry is fast compared with that of the flow; in this limit the reaction zone 
length is small and approaches that of a Chapman-Jouget detonation where the 
reaction is instantaneous and takes place in the shock front. For k ,  = O(1) and k,<c 1 
the chemical energy release is small and is coupled to the flow only through the bulk 
modulus B and the reaction rate Q. 

In scaled variables, the Rankine-Hugoniot conditions (2.6)-(2.9) become 

Again, the terms containing p o  are to be neglected in the strong shock case. 

4. Self-similar solutions 

The general group under which the governing partial differential equations and 
Rankine-Hugoniot conditions are invariant has been computed by Logan and PCrez 
(1980) under the assumption of polytropic equation of state and in the strong shock 
limit. Here we make no assumptions concerning the functional form of the equation 
of state, e = e ( p ,  p ,  A ) .  In fact, we wish to determine forms of the equation of state. 
and reaction rate for which self-similar solutions can be found. 

It is easy to see that the mass equation (3.2), the momentum equation (3.3) and 
the rate equation (3.5) admit the following transformation group?: 

? = e b ( t  +to)-to 

p = e'p ii =eau (4.1) 

p = e a + b  r 

= e2a+c  (P +ed-pO i=eza (A + A o ) - A .  

where a, 6 ,  c, po,  A0 are arbitrary group parameters, and provided that the reaction 
rate Q = Q ( p ,  p +Po, A + A O )  is of the form 

with H an arbitrary function and a = c/(2a +c) ,  @ = -b/(2a +c) .  We remark that 
the two arguments in H are each invariant under transformations (4 .1 ) .  

+ I n  the planar case, i=e '+b(r+ro)-ro ,  P = e n ( u  + u o ) - u 0 .  
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To determine the equation of state e = e ( p ,  p + P O ,  A + A o )  that will admit self-similar 

(4.3) 

sohtions, we work with the energy conservation law in the form 

d(pe)/dt+(pe + p )  div U = O  

rather than (3.4). By observation, pe must scale like p ; in fact, 

d -  d -  - ( p e ) + ( G + p )  divG = - (pe )+(G+eznCC(p  + p o ) - p o )  div U. 
dT dt 

Therefore we will have invariance if 
- 
pe - P o  = e'"+' ( p e  - P O ) .  

Writing out this condition to first-order terms in the parameters a,  b and c forces 
g = pe to satisfy the first-order quasi-linear equation 

( P  +PO)& +mpg, + (1 - a m  +Ao)g, = g - P o .  

Solving the resulting characteristic equations gives 

e - e o = - +  
P P  

(4.4) 

which is the general form of the equation of state for which self-similar solutions will 
exist. The constitutive functions B, r and I can now be determined from the defining 
relations (2.5). From this we find 

(4.5) 

Here, E is an arbitrary function while F, G and L are related to E and its derivatives 
through relations (2.5). 

Note that the equation of state (4.4) assumes the Mie-Gruneisen form (see 
Zel'dovich and Raizer 1967) in special cases. In fact, take a = 0, p o  = 0 which, e.g., 
leaves invariant the initial conditions of the strong shock case and consider the inert 
case where A is absent. Then (4.4) becomes 

e -eo = ( p / p ) E ( p ) .  

The Mie-Gruneisen form is 

(4 .5)  

P - f ' (p)  = p r ( p ) ( e  - f ( p ) ) .  (4.5ii) 

( P ~ ( P ) ) - ' ( P  - f ' ( p ) ) + f ( p )  = ( p / p ) E ( p ) + e o .  

f ' ( ~ ) - p U p ) f ( ~ )  = - e o p r ( p ) .  

Requiring forms (4.5) to coincide gives 

Taking E ( p )  = l / T ( p )  then gives a linear differential equation for f ( p ) ,  namely 

Thus 

(4.5iii) 
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where 

@ ( P I  = exp( -1 p b )  dp) 

and c is an arbitrary constant. Thus (4.5ii) with f(p) given by (4.5iii) gives forms of 
the Mie-Gruneisen equation of state under which similarity solutions can be found. 

Let us return to the self-similar reduction of the ZND equations. By standard 
methods (see Bluman and Cole 1974), knowledge of the transformation group permits 
the calculation of the similarity variable and self-similar solutions. Here, we have 
similarity variables 

s = r/(t + I)'+' (4.6) 

where 

5 =(a - 1)/2P = a /b  (4.7) 

(without loss of generality we have taken to = 1). The resulting self-similar forms of 
the solution are 

p = ( t  + l)"R(S) 

p + p o  = + 11~'+"P(s) 

U = ( t  + l)'O(s) 

A + A o  = ( t  + 1)2E;i(s) 
(4.8) 

where 

77 = -a/P = c/b (P  + 0). (4.9) 

The shock front and shock velocity are given by 

r = ( t  + I)'+' D = (5 + l ) ( t  + 1)'. (4.10) 

Notice that in the planar case (v = 0) the equations admit the transformation f = 
eatb(r +ro)  -ro because the divergence term in the continuity equation vanishes. 
Hence the similarity variable will be in the planar case 

s = ( r  +ro)/(t  +tO)'+l. (4.11) 

The requirement that the shock conditions be invariant further restricts the group 
(4.1). It is easy to see that ( 3 . 7 ~ )  forces c = 0. Hence a = 77 = 0. The invariance of 
(3.76) forces PO = 0, i.e. the strong shock condition. Similarly, invariance of ( 3 . 7 ~ )  
forces A. = 0; hence, for the self-similar solution all chemical reactions take place 
behind the shock front. 

Therefore, in summary, under the strong shock assumption, the similarity variable 
is given by (4.6) and, upon introduction of 

- 
A 

s2([+1)2 '  
A =  

P 
s 2 ( &  + q2 R = R  P =  

l7 U=- 
s(5 + 1) 

(4.12) 

the self-similar forms of the solution are 

P = R ( s )  

p = [r(5 + l ) / ( t  + 1)I2P(s) 

U = [ r / ( t  + 1)1(5 + 1)U(s )  

A = [r(5 + l ) / ( t  + 1)I2A(s). 
(4.13) 

Substitution of these quantities into the partial differential equations (3.2)-(3.5) gives 
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a system of ordinary differential equations in the quantities SRI, SUI, sP' and SA': 

U-1  R 0 0 sR'  
U - 1  1/R 0 ][;LJ:] 

FP U - 1  0 
0 0 U - 1  SA' 

r - ( U  + 1)RU 
.U((/ -=) 1 -2PIR 

(4.14) 

1 
The initial conditions are obtained from (3 .7 )  in the strong shock case while using 
(4.13) to get three relations 

U ( l ) = l - - l / R ( l )  P(  1 )  = U (  1 )  A(1) = 0 ,  

The fourth condition follows from ( 3 . 7 d )  when the equation of state is known. In 
the polytropic case where e = p / p ( y  - 1) - A q 2 ,  we have 

R ( l ) = -  Y + l  U(1)=--- A( 1 )  = 0. (4.15) P ( l ) = -  
7 - 1  Y + l  Y + l  

2 2 

5. The case /3 = 0, reduction to phase-plane analysis 

When p = 0 in (4.2) or equivalently, b = 0 in (4.1), the similarity variable becomes 

s = r exp(-t) ( 5 . 1 )  

and the self-similar forms of the solution are 

P = R b )  U = rU(s)  p = r 2 p ( s )  A = r2A(s) .  (5.2) 

The partial differential equations give rise, in the case F = y, G = y - 1,  H = L = 1, 
to the following system of ordinary differential equations: 

(5.3) 

U - 1  R 0 0 - ( U  + 1)UR 
- U 2 - 2 P / R  

0 yP U - 1  0 -P[2U +(v + 1)yU - k ( y  - l ) ]  
0 0 0 U-1  - 2 U A +  k t P / R  

where k = k,k,. 
This special case is important because it is the only case when the problem can 

be reduced to a phase-plane analysis, and it is equivalent to the case where the reaction 
rate is proportional to the internal energy p u / (  y - 1). 
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Using Cramer’s rule and some algebraic manipulation, we may write (5.3) as 

(U - l)DsR’= -R[(v + 1)UD + A ]  DsU’ = A  

(U - 1)DsP’ = -P([(2 + y (v + 1))U - k ( y  - 1)D + YA} (5.4) 

(U - 1)sA’ = -2UA + ktP/R 

where 

A = -U2(U - 1 )  +yP/R[(v + l )U + ( 2 / y ) ( l  - t k ( y  - I ) ) ]  ( 5 . 5 )  

and 

D = (U - 1)2  -yP/R. 

The qualitative behaviour of a system of nonlinear ordinary differential equations 
such as (5.4) may be determined from its critical points, where each of the derivatives 
becomes indeterminate. The key to physical interpretation of the critical-point analysis 
of equations (5.4) is the introduction of sound speed as a new variable and investigation 
into the characteristics of the original system of partial differential equations. So, let 
us define the sound speed C by C2 = yP/R. Using the relation R’ /R  = P’/P - 2C’/C 
to eliminate R ’ / R  from (5.4a), then using (5,4c), we obtain the system 

(U - 1)DsC’ = B (U, C)C DsU’=A(U, C )  
(5.7) 

(U-l)DsP’=M(U, C)P (U-l)sA’=-2UA+C2kt/y 

where 

D = (U  - 1)2  -C2 

B = - $ [ ( u U - ~ ) D + ( ~ - ~ ) A ]  

A = - U 2 ( U -  1)+C2[(v + ~ ) U + Z ]  

M = -{[(2 + y ( v  + 1))U -b]D +?A} 
( 5 . 8 )  

and where 

2 = ( l / Y ) P - k ( Y - l ) I  a = 2 + ( v + l ) ( y - l )  b = k ( y  - 1) .  (5.9) 

The initial conditions given at the shock front (s = 1 )  are 

A(1) = O .  (5.10) 
2 

P(  1 )  = - 
Y + l  Y + l  Y + l  

[2Y (Y - w2 C(1) = 
2 

U(1)  = - 

We notice that the first two equations in (5.7) are uncoupled from the remaining two, 
thus making a phase-plane analysis in the UC plane possible. The ratio of ( 5 . 7 ~ )  
and (5 .7b)  gives the single equation 

dC/dU =B(U,  C)C/A(U,  C)(U - 1).  (5.11) 

Hence the problem has been reduced to a phase-plane ordinary differential equation 
plus three quadratures. See, e.g., Courant and Friedrichs (1948) for a similar reduction 
in the inert case. 

6. Some remarks on characteristics 

Before proceeding with a critical-point analysis of (5.11) we present some results 
which will relate our analysis to the physical system as well as the characteristic 
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structure of the flow. The results in this section are independent of the geometry 
(value of v )  chosen. 

First, the system of partial differential equations (3.2)-(3.5) can be written in 
characteristic form (see Whitham 1976, p 116) as 

du 1 dp vuc y - l k Q  dr -*- -= 7-*- 
dt pc dt r y c dt 

along-= u i c  

dpldt - C’ dpldt = k (y - 1)pQ (6.2) 

dA/dt = ktQ along drldr = U (6.3) 

along drldt = U 

where c = yp /p .  
The connection between the Mach (or sonic) lines defined by drldt = U f c, the 

particle paths defined by dr/dt = U, and the similarity variables can be summarised as 
follows: 

(I) s = constant is a particle path if, and only if, U = 1 ;  
(11) s =constant is a Mach line if, and only if, D = 0. 

In other words, a phase trajectory in the UC plane which enters the line U = 1 must 
represent a particle path at that point, and the intersection with D = 0 must be a 
Mach point in the flow. -(I) follows from the fact that 

dr/dtI,=,onstant-u s r ( 1 - U )  (6.4) 

and (11) follows from 

(drldt~s=constant-u)2-c2 = r2D. (6.5) 

From (5.4) we note that if a phase trajectory crosses a Mach line D = 0, then the 
derivatives will be undefined unless A = 0. 

In this vein, we make the following remark: 
(111) if D = 0 for a certain value of s and if the characteristic equations (6.1) hold, 

then A = 0. 
The proof of (111) follows from writing the characteristic equations in terms of the 
similarity variables. To this end, 

vuc y - 1  Q O = ? l  kLdp /  * - ~ - k - = r [ U * C ( v U + z ) ] .  
dt s=wnstan t  PC dt s=constant Y Y c 

Since A is given in (5.8),  and D = 0 implies U* C = 1,  it follows that 

A = - U 2 ( U -  1)+C2[(v + 1 ) U + z ] = * U 2 C  + C 2 U + C 2 ( v U + ~ )  

= CU(C* U ) + C 2 ( v U + z )  = C U + C 2 ( v U + z )  

on an outgoing characteristic for positive particle velocity. Hence A = 0 follows from 
(6.6), to confirm (111). Finally the third relation of (5.8) implies that B = 0 provided 
t h a t A = D = O .  

In summary, if a phase trajectory in the UC phase-plane (figure 1) crosses the 
Mach line D = 0 then it must cross at a critical point (where A = 0 and B = 0) in order 
to have the characteristic equations satisfied. If it does not cross at a critical point 
then the characteristic equations will not be satisfied on the Mach line and the solution 
must end there with a singularity. 
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Figure 1. UC phase plane. U is the particle velocity and C is the sound speed. 

7. Planar geometry 

For planar geometry (v = 0) and in the special case of a polytropic gas with y = 3 it 
can be shown analytically that the critical point on the Mach line D = 0 is a focal 
point or a nodal point. 

Eliminating C from the equations D = 0 and A = 0 (see (5 .8) )  gives the coordinates 
of the critical point which lies on the Mach line; these are 

U o = ( k  - l ) / ( k  +$) CO = ( 3 / 2 ) / ( k  ++I.  
We can classify this critical point by translating it to the origin via the transformation 

o=u-u, c=c-co 
and then linearising the system (5.11). A long but straightforward calculation shows 
that linearised (5.11) becomes 

d c / d o  = ( a I o + p 1 ~ ) / ( a 2 ~ + p 2 c )  
where 

a1 = - 3 ( 8 k 2 + 2 k  + 1 7 ) / [ 8 ( k + $ ) 3 ]  @ I =  - 3 ( k 2 - $ k  + 4 ) / [ 2 ( k  +$)3] 

a2 = 3(4k2  - 20k + 7 ) / [ 8 ( k  ti)'] 0 2 = 3 ( k  - l ) ' / ( k  +$)3 .  

It follows that 

p = - ( a z + D ~ l ) = [ % k  +$) -3 ] (2k  + 1 ) > 0  

Consequently, 
2 21 3 405 2 A=p - 4 q  = ( - 2 7 k 4 + 7 k  +,k + g k  -%) / (k  +$)6. 



Self-similar detonation waves 2045 

It is easy to see that 
(i) A < O  for 0 d k <f  or k >:; 
(ii) A > O  for $ < k  <$ 

Consequently, in case (i) the critical point is a focal point (spiral) and in case (ii) it is 
a nodal point (see Birkhoff and Rota 1969, p 132). In the exceptional cases k = f or 
k = 2, the critical point is a starlike point since A = 0 and q > 0. When an integral 
curve of (5.11) crosses the sonic line D = 0, by computing dC/dU at D = 0 it is easily 
seen that it crosses with slope ( y  - 1)/2. 

A typical UC phase portrait for (5.11) with k = 1 is shown in figure 2. In this case 
the critical point on the Mach line is a stable spiral and is located at ($, i). The curves 
D = 0, A = 0 and B = 0 are shown by broken curves. 

I U 

Figure 2. Phase portrait for (5.11) for k = 1.5, Y = 0, and y = 3. The critical point is a 
stable focus. Shown are loci A = 0 and B = 0. 

However, (5.11) does not give a totally accurate description of the true phase 
trajectories. The actual equations are (5.7a, b ) ,  

d C  CB(U,C) _-  d U  A ( U , C )  -= 
ds sD(U,C) ds - (U-l)sD(U,C) (7.1) 

with s running from s = 1 back to s = 0. The system (7.1) has a line of singularities 
at D = 0, which cancels out in (5.11). 

Trajectories of (7.1) subject to the initial conditions (5.10a, b )  are shown in figure 
3. For k = 3 the path begins at the initial point I and proceeds away from the critical 
point until it reaches the curve U = 1 which, by the results in 0 6, is a particle path. 
This occurs at s = 0.34 and the solution becomes singular at that point (see (7.16)). 

For k = 2.5 the trajectory of (7.1) reaches the line U = 0 where, again, the solution 
becomes singular for a value s *  of s for which s *  > 0. For still larger values of k ,  e.g. 
k = 5 ,  the traiectory goes up, then curls back to the Mach line D = 0 at s = s *  > 0 (see 
figure 3). Since the point of intersection is not a critical point, the solution becomes 
singular and must terminate. 
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C 

3.( 

2 0  

1 0  

- 
0 

2.0 \ 

Figure 3. Solutions of (7.1) for Y = 0, y = 3 and various values of k which are labelled 
on the curves. All trajectories but one begin at the initial point I: (0.5,0.866) and end 
on the lines D = 0, U = 0 or U = 1 for a yalue of s 0. The exception occurs when 
k =  1.815 where the trajectory approaches (U,  00) with U=O.55 a s s  -0. 

The following question therefore arises: is there a value of the modelling number 
k for which the similarity equations (5.7) have an analytic solution valid for all s in 
the interval 0 s s s l ?  Such a k cannot be determined analytically, but a numerical 
integration of (5.7) indicates that for a unique value 6 with 1.8156<E<1.8162, a 
non-singular solution exists. (The precision is sufficient for our present needs. The 
numerical calculations were performed on a microcomputer using a fourth-order 
Runge-Kutta routine.) For this special case C +CO, U + U = 0.55, and P + 0;) as s + 0. 
Consequently, one can regard (5.7) as a nonlinear eigenvalue problem where values 
of the eigenvalue k are sought for which the solution exists over the entire interval 
O s s s l .  

8. Spherical geometry 

The spherical case (v = 2) has been treated in detail by Logan and Bdzil (1982). 
However, we are now able to give a physical interpretation to their results. 

As in the planar case, there is a unique eigenvalue k = 3.3515135 in the spherical 
case for which equations (5.7) have a solution in the range 0 s s  s 1. In this case 
C +CO and U + 0.5226 as s + 0. This corresponds to the integration to the saddle 
point in Logan and Bdzil. (We note that the x y  Lie plane introduced in that paper 
is related to the UC plane in the present work via the transformations y = U - 1, 
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x = SU’ + U - 1 and and is their self-similar pressure. Their para- 
meter a is equal to our modelling number k.) All other integrations end at singularities 
U = 1, U = 0, or D = 0, which represent characteristic curves (particle paths or Mach 
curves) for the original system of governing partial differential equations. Thus, in 
the rt plane, the solution must end at the curve s = s * ,  precisely when that curve 
coincides either with a characteristic (or an envelope of characteristics) or with a 
particle line, e.g. a piston, or a contact discontinuity. 

= s2P, where 
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